

Teacher Notes: Linear Equations

Questions to Consider About the **Key Mathematical Concepts**

> When solving problems involving linear relationships, can students determine equivalent forms of representation? To what extent do they

- make sense of information given in graphical and symbolic forms?
- model reasoning skills that allow them to determine whether different representations are equivalent?
- describe key features of graphs and equations that allow analysis of equivalency?

Common Core Connection (CCSS.Math.Content.8.F.A.3)

Grade: Eighth

Domain: Functions

Cluster:

Define, evaluate, and compare functions.

3. Interpret the equation y = mx + b as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function $A = s^2$ giving the area of a square as a function of its side length is not linear because its graph contains the points (1,1), (2,4), and (3,9), which are not on a straight line.

Uncovering Student Understanding About the Key Concepts

Using the Linear Equations Probe can provide the following information about how the students are thinking about multiple representations of linear functions.

Do they

Do they

- look for relevant information shown in the graph that will help match an equation (rate of change and *y*-intercept)?
- OR not see the relationship between a graph and its equation?

EXPRESSIONS AND EQUATIONS AND FUNCTIONS PROBES

Do they

- recognize key features of linear equations when written in various forms?
- consider how the sizes of the C intervals would change the appearance of the line?
- Do theyOR• not use the numbers in the
 - equations as clues to what the graph would look like?
 - OR determine slope by thinking only about intervals of 1 unit?

<u>Exploring Excerpts From Educational</u> Resources and Related Research

Common areas of difficulty for students:

Students fail to recognize the underlying equivalence when the same set of points is represented by a graph or an equation or a table. They tend to see changes in form as producing unrelated representations. (NCTM, 1999, p. 215)

Students may not see the links between different representations of a functional relation—for example, the mutual dependence between a function's graph and equation, or between its table and equation. (Driscoll, 1999, p. 146)

<u>S</u>urveying the Prompts and Selected Responses in the Probe

The Probe consists of five selected response items each relating to a common graph. The prompts and selected responses are designed to elicit understandings and common difficulties as described below:

If a student chooses	It is likely that the student
1. yes, 2. no, 3. yes, 4. no, 5. yes (correct answers)	 recognizes multiple ways of representing linear functions. [See Sample Student Response 1]. Look for indication of the student's understanding in the
(,	written explanations of how the student got the answer.
Various other patterns	• fails to recognize one or more of the following key features of equations and graphs that link them together as representing the same information:
	 positive slope versus positive coefficient of <i>x</i> [See Sample Student Response 2]; positive <i>y</i>-intercept versus positive constant [See Sample Student Response 2];

If a student chooses	It is likely that the student
	 magnitude of the slope depends on the intervals not the "look" of the graph [See Sample Student Response 3]; or various other incorrect ideas [See Sample Student Response 4].

(Continued)

<u>*T*</u>eaching Implications and Considerations

Ideas for eliciting more information from students about their understanding and difficulties:

- What information is shown in the graph that can help determine a possible equation?
- What are some key features of the equations that might help you graph them?
- What do the numbers tell you in the equation?
- Does the graph have a positive or negative rate of change? How can you find the rate of change in the equations?
- Where does the graph cross the *y*-axis? What would the *x* value be at this point? How would you determine the *y*-intercept in an equation?

Ideas for planning instruction in response to what you learned from the results of administering the Probe:

- Allow students ample opportunities to explore the explicit connections between, and solve problems in which they use, tables, graphs, words, and symbolic representations.
- "Students should see algebra not just as the process of transforming and manipulating symbols but rather as a tool for expressing and analyzing relationships between quantities that change" (NCTM, 1999, p. 215).
- Have students explore the advantages and disadvantage of representing a relationship with each of the different types of representation.
- Use technology as an avenue for students to make connections between the different types of representations.

Sample Student Responses to Linear Equations

Responses That Suggest Understanding

Sample Student Response 1

Probe Item 1. Yes. Since I don't see labels on the axis, the numbers there could be anything. I know the slope is up to right (pos) and the line crosses y at a pos number.

Probe Item 2. No. Negative slope means up and to left.
Probe Item 3. Yes. Pos slope and pos *y*-intercept.
Probe Item 4. No. I changed to *y* = form so I could tell if slope was pos and *y*-inter pos. Slope was neg.
Probe Item 5. Yes. Same thing. This time both were pos.

Responses That Suggest Difficulty

Sample Student Response 2 Probe Item. d. The x number is +4 and the y number is +2. Sample Student Response 3 Probe Item. c. No. Those numbers are too big to be right. The line is gradual.

Sample Student Response 4

Probe Item. b. Yes. The -6x means the line starts to the left of the *y* line and it does.